Development of an Energy-Absorbing, Low-Maintenance Median Barrier

Tyler Schmidt, B.S.C.E., E.I.T.
Graduate Research Assistant

Midwest Roadside Safety Facility
University of Nebraska-Lincoln

IHEEP Conference 2014
New Orleans, LA
9/29/2014
Introduction

- Concrete median barriers widely used along highways for containing and redirecting errant vehicles
 - Withstand high-energy impacts
 - Low maintenance
 - Generally rigid
 - Used in limited deflection areas
Concrete Barriers

- Common shapes
- Increased rollover rates
- High lateral vehicle decelerations
- Need exists to develop alternative barrier
Research Objectives

- Develop energy-absorbing, high-containment longitudinal barrier system
- Reduce lateral acceleration by 30% for passenger vehicles
- Maximum of 36 in. footprint
- Minimal damage
- Fully restorable
- AASHTO MASH TL-4
TL-4 Impact Conditions

- 22,000-lb single-unit truck
 - 56 mph
 - 15 degrees
- 5,000-lb pickup truck
 - 62 mph
 - 25 degrees
- 2,425-lb small car
 - 62 mph
 - 25 degrees
Energy-Absorbing Applications

- SAFER Barrier
- Guardrail
- End Terminal
- Crash Cushion
- Springs/Bumpers
- Motorcycle Barrier
- Ship Docking
Review of Energy Absorbers

- Energy absorption mode – crushing, tearing, friction, tension, shear
- Restorable and reusable materials
- Rubber – customizable & resistant to environmental effects
Design Concepts
Component Testing vs. Simulation

- Determine dynamic behavior
- Evaluate shape and material
- Predict performance
- Allow for modifications
Barrier Components
1100C Simulation
2270P Simulation
10000S Simulation
Test No. SFH-1
Test No. SFH-1
Test No. SFH-1 Damage
Test No. SFH-1 Damage
Force vs. Time (SFH-1)
Test No. SFH-2
Test No. SFH-2 Damage
Test No. SFH-2 Damage
Force vs. Time (SFH-2)
Summary/Conclusions

- Lateral accelerations decreased
 - 43% for pickup truck
 - 21% for small car

- Passed MASH TL-4 impact safety standards

- Minimal barrier damage
 - Spalling (SFH-1)
 - Rubber post tearing (SFH-2)
Recommendations

- Full-scale crash test with single-unit truck
- Design refinements and/or modifications
 - Reduce the spalling
 - Eliminate rubber post tearing potential
- Design rigid concrete parapet transition
Sponsors and Acknowledgements

- Concrete Industries
- USDOT FHWA
- Nebraska Department of Roads
- Holland Computing Center at University of Nebraska-Lincoln
Report Locations

- http://mwrsf.unl.edu/researchhub.php
 - TRP-03-280-14
 - TRP-03-281-13
 - SFH Full-Scale Report (in progress)
 - Design/Bogie Report (in progress)

- http://digitalcommons.unl.edu/dissertations/AAI3546814/
 - Dr. Jennifer Schmidt Dissertation