Impact of Recycling Agents on the Design of Asphalt Mixtures Containing Roofing Shingles

Kimberly Koehl
Louisiana Transportation Research Center
Department of Civil and Environmental Engineering
Louisiana State University

56th Annual IHEEP Conference
New Orleans, Louisiana
September 28 to October 2, 2014
Acknowledgements

- Louisiana Department of Transportation and Development
- Louisiana Transportation Research Center
Outline

- Background
- Objective/Scope
- Testing
- Results
- Conclusions

http://www.shinglerecycling.org/
Sustainability

- Meeting the needs of the present without compromising the needs of the future
- Economic Sustainability
 - Cost effective in long-term
- Social Sustainability
 - Meeting society’s needs
- Environmental Sustainability
 - Reduce use of natural resources
 - Reduce greenhouse gas emissions
Sustainability and Transportation

- **Materials**
 - Natural resource conservation
 - Reduction of virgin materials
 - Reduction of hazardous materials/chemicals
 - Use of Recyclable material
 - Recycled asphalt pavement, recycled asphalt shingles, recycled steel

- **Construction Practice**
 - Conserve energy in highway construction
 - Reduce Greenhouse gas emissions
 - Increase roadway capacity
 - Extending roadway lifespans

- **Benefit environment, users, industry**
Sustainability and Transportation

- **Materials**
 - Natural resource conservation
 - Reduction of virgin materials
 - Reduction of hazardous materials/chemicals
 - Use of Recyclable material
 - Recycled asphalt pavement, recycled asphalt shingles, recycled steel

- **Construction Practice**
 - Conserve energy in highway construction
 - Reduce Greenhouse gas emissions
 - Increase roadway capacity
 - Extending roadway lifespans

- **Benefit environment, users, industry**
Recycled Asphalt Shingles and Sustainability

- Reduces amount of aggregate in mixture
- Reduces amount of virgin asphalt binder in mixture
 - Virgin asphalt binder from Petroleum
 - Natural resource
- Prevents waste shingles from being discarded or combusted
 - Reduces greenhouse gas emissions
- Reduces cost of mixture

Reclaimed Asphalt Shingles

- About 10 million tons of asphalt shingles are removed from roofs each year.
 - Post-Consumer Waste Shingles (PCWS)
- About 1 million tons of “factory scrap” are produced each year.
 - Manufactured Waste Shingles (MWS)
- Wasted Shingles are either placed in landfills or combusted.

http://www.roofingshinglerecycling.com/author/lena/
Reclaimed Asphalt Shingles

Composition
- Asphalt cement: 19-36%
- Fiberglass or Organic Felt: 2-15%
- Fine Aggregate: 20-38%
- Mineral Filler: 8-40%

Asphalt obtained from post-consumer waste shingles has very high stiffness due to extreme aging.

http://www.explodedhome.com/composition-roofing-shingles/
Benefits of using RAS

- **Cost reduction**
 - Reduce amount of virgin asphalt binder and aggregate needed

- **Improve stiffness of asphalt binder**
 - Reduce rutting
 - Increase Sustainability

Concerns with using RAS

- Consistency, availability, and quality of asphalt binder
- Limited Guidance in design methods
 - AASHTO PP 23-14
 - AASHTO PP 78-14
- The shingle asphalt availability factor needs to be verified
 - 70-85%
- Reduction of intermediate and low temperature performance
 - Increases stiffness of asphalt binder
 - Increases susceptibility to fatigue and transverse cracking

Availability Factor = \[
\frac{\text{Amount of Asphalt Retained in Mixture}}{\text{Amount of Asphalt in mixture}}
\]
Recycled Binder Ratio

- Recycled asphalt Binder divided by total asphalt binder content
- RBR of 0.30-0.50 is desired
 - Maximum RAS content without compromising mixture
- RBR can be increased by adding Recycling Agents
 - Softening Agents- soften the asphalt binder by reducing viscosity
 - Rejuvenators- restore maltene content that was lost during aging
Objective

- To evaluate the effectiveness of introducing RAS into a mixture to increase the sustainability of the asphalt binder mixture design process
- To ascertain the influence of recycling agents on restoring asphalt binder properties

Scope
Evaluate laboratory performance for five mixtures with a nominal maximum aggregate size of 12.5 mm

<table>
<thead>
<tr>
<th>Mixtures without Recycling Agents</th>
<th>Mixtures with Recycling Agents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixture 1: 70CO</td>
<td>Mixture 3: 70PG5P-RA1</td>
</tr>
<tr>
<td>- PG 70-22m asphalt binder</td>
<td>- PG 70-22m asphalt binder</td>
</tr>
<tr>
<td>- Conventional mix- 0% RAS</td>
<td>- RAS Content= 5%</td>
</tr>
<tr>
<td>Mixture 2: 70PGP5P</td>
<td>- RAS type= PCWS</td>
</tr>
<tr>
<td>- PG 70-22m asphalt binder</td>
<td>- RA 1 content= 5%</td>
</tr>
<tr>
<td>- RAS Content = 5%</td>
<td>- Non-fossil fuel based - Vegetable oil</td>
</tr>
<tr>
<td>- RAS type= PCWS</td>
<td>Mixture 4: 70PG5P-RA2</td>
</tr>
<tr>
<td></td>
<td>- PG 70-22m asphalt binder</td>
</tr>
<tr>
<td></td>
<td>- RAS Content= 5%</td>
</tr>
<tr>
<td></td>
<td>- RAS type= PCWS</td>
</tr>
<tr>
<td></td>
<td>- RA 2 content= 12%</td>
</tr>
<tr>
<td></td>
<td>- Fossil fuel based – Naphthetic oil</td>
</tr>
<tr>
<td></td>
<td>Mixture 5: 52PG5P</td>
</tr>
<tr>
<td></td>
<td>- PG 52-28 asphalt binder</td>
</tr>
<tr>
<td></td>
<td>- RAS content= 5%</td>
</tr>
<tr>
<td></td>
<td>- RAS type = PCWS</td>
</tr>
<tr>
<td></td>
<td>- Softer asphalt binder used as softening agent</td>
</tr>
</tbody>
</table>
Determine:

- What happens if 5% RAS is added to a mixture with no recycling agent?
 - Compare mixtures 1 and 2
- What if 5% RA-1 is added to a mixture with 5% RAS?
 - Compare mixtures 2 and 3
- What if 12% RA-2 is added to a mixture with 5% RAS?
 - Compare mixtures 2 and 4
- What if 12% RA-2 and 5% RA-1 are added to two different mixtures with 5% RAS?
 - Compare Mixtures 3 and 4
- What if a softening agent is used instead of a rejuvenator?
 - Compare mixtures 3, 4, and 5
Methodology - Design

AASHTO R 35
- Practice for Superpave volumetric design for hot mix asphalt (HMA)
- Does not consider quality of asphalt binder
 - Mechanical tests performed in laboratories to determine quality of asphalt binders used in mixtures
- Design of 70CO

AASHTO PP 23-14

AASHTO PP 78-14
- Standard practice for Design Considerations when using RAS in asphalt mixtures
- Considers RAS size, fibers in RAS, and virgin asphalt binder
- Maintained aggregate structure and asphalt cement content of 70CO but added RAS
HMA Mixture Preparation

- Oven, 163°C
- 25°C or 163°C
- 195°C
- Oven, 163 °C
Recycled Asphalt Availability

- **No RA**

- **Asphalt Binder Content (%)**
 - 70CO: 0%
 - 70PGSP: 0.5%, 36%

- Mixture Type:
 - RAS
 - Virgin Asphalt Binder

- Calculations:
 - $0.05 \times 28\% = 1.4\%$
 - $\frac{0.5}{1.4} = 36\%$
Recycled Asphalt Availability

![Bar chart showing the asphalt binder content for different mixture types.]

- **70CO**: 5.3% RAS, 0% Virgin Asphalt Binder
- **70PG5P**: 36% RAS, 4.8% Virgin Asphalt Binder
- **70PG5P-1**: 100% RAS, 3.9% Virgin Asphalt Binder
- **70PG5P-2** and **52PG5P**: 0% RAS, 0% Virgin Asphalt Binder

No RA

\[\frac{1.4}{1.4} = 100\% \]

\[0.05 \times 28\% = 1.4\% \]
Recycled Asphalt Availability

Asphalt Binder Content (%)

Mixture Type

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>No RA</th>
<th>0.05 x 28% = 1.4%</th>
<th>1.2/1.4 = 86%</th>
</tr>
</thead>
<tbody>
<tr>
<td>70CO</td>
<td>5.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70PGSP</td>
<td>4.8</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>70PGSP-1</td>
<td>3.9</td>
<td>1.4</td>
<td>4.1</td>
</tr>
<tr>
<td>70PGSP-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52PGSP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recycled Asphalt Availability

![Bar chart showing asphalt binder content for different mixture types.]

- **70CO**: 5.3%
- **70PG5SP**: 4.8% (RAS), 36% (Virgin Asphalt Binder)
- **70PG5SP-1**: 3.9% (RAS), 100% (Virgin Asphalt Binder)
- **70PG5SP-2**: 4.1% (RAS), 86% (Virgin Asphalt Binder)
- **52PG5SP**: 4.6% (RAS), 50% (Virgin Asphalt Binder)

No RA

- 0.05 x 28% = 1.4%
- \(\frac{0.7}{1.4} = 50\% \)

Mixture Type

- RAS
- Virgin Asphalt Binder
Performance Testing

- High Temperature
 - Loaded-Wheel Test

- Intermediate Temperature
 - Semi-circular Bending Test

- Low temperature
 - Thermal Stress Restrained Specimen

http://www.pavementinteractive.org/article/rutting/
http://www.coastalroadrepair.com/Knowledgebase/Alligator(Fatigue)Cracking.aspx
http://www.roadscience.net/services/distress-guide
Loaded Wheel Test

- **AASHTO T 324**
- Steel wheel rolls over surface of sample
 - 20,000 passes or until rut depth of 20mm
 - Wheel load= 703 N
 - Speed= 1.1 km/hr
 - Performed at 50°C
 - Submerged in water to observe moisture sensitivity
- Deformation is recorded
- Performance characteristic observed: rutting

![Graph showing rutting performance](image.png)
Semi-Circular Bend Test

- Semi-circular specimen simply supported and loaded at mid-point
 - 150mm X 57mm specimen
 - Aged at 85°C for five days
 - Loaded monotonically until fracture (0.5mm/minute)
 - Performed at 25°C

- Notches are added to specimen to control crack propagation path
 - 25.4, 31.8 and 38.0 mm notches

- Load and Vertical Strain Deformation
- Property obtained: Critical Strain Energy, J_c
- Performance characteristic observed: fatigue cracking
Thermal Stress Restrained Specimen Test

- AASHTO TP10-93
- Rectangular specimen restrained by two supports and subjected to thermal loading until fracture
 - $-10^\circ C \pm 1^\circ C$ per hour
- Load, Displacement, and Temperature
- Performance characteristic observed: thermal cracking

[Graph: Load vs Temperature]

Slope = $\delta S / \delta T$

37°C, 1150 lbs
Results
Loaded Wheel Test Results
@ 50°C

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Depth (mm) after 20,000 passes</th>
</tr>
</thead>
<tbody>
<tr>
<td>70CO</td>
<td>3.0</td>
</tr>
<tr>
<td>70PG5P</td>
<td>2.1</td>
</tr>
<tr>
<td>70PG5P-1</td>
<td>1.4</td>
</tr>
<tr>
<td>70PG5P-2</td>
<td>4.4</td>
</tr>
<tr>
<td>52PG5P</td>
<td>7.0</td>
</tr>
</tbody>
</table>

No RA
Semi-Circular Bend Test Results @ 25°C

Mix Type	Jc (kJ/m²)
70CO | 0.50
70PG5P | 0.50
70PG5P-1 | 0.23
70PG5P-2 | 0.36
52PG5P | 0.22

No RA
Thermal Stress Restrained Specimen Test Results

Fracture Temperature (°C)

- 70CO -19.7
- 70PG5P -22.6
- 70PG5P-1 -14.2
- 70PG5P-2 -14.0
- 52PG5P -21.0

No RA
Summary

<table>
<thead>
<tr>
<th>Mixture Type</th>
<th>Performance Comparison to Conventional</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Loaded Wheel Test</td>
</tr>
<tr>
<td>70PG5P</td>
<td>+</td>
</tr>
<tr>
<td>70PG5P-RA1</td>
<td>+</td>
</tr>
<tr>
<td>70PG5P-RA2</td>
<td>+</td>
</tr>
<tr>
<td>52PG5P</td>
<td>-</td>
</tr>
</tbody>
</table>
Conclusions

- Is introducing RAS to a mix an effective way to increase the sustainability of asphalt mix design?
 - Yes, if properly designed and evaluated
Conclusions

- Do recycling agents effectively restore properties of asphalt?
 - Not for the ones we evaluated
Conclusions

- **LWT**
 - Performance of mixtures containing RAS was similar or improved
 - RAS mixtures are not moisture susceptible

- **SCB**
 - Inclusion of RAS with rejuvenators reduced J_c value of all mixtures
 - RA 2 better at restoring properties of the binder than RA 1

- **Inclusion of RA**
 - Increased the recycled asphalt availability but not the quality of the asphalt binder
Thank You!